The mixed Lipschitz space and its dual for tree metrics

نویسنده

  • William Leeb
چکیده

Lipschitz condition is a natural notion of function regularity in this context, and the norm dual to the mixed Lipschitz space is a natural distance between measures. In this paper, we consider the tensor product of spaces equipped with tree metrics and give effective formulas for the mixed Lipschitz norm and its dual. We also show that these norms behave well when approximating an arbitrary metric by tree metrics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second dual space of little $alpha$-Lipschitz vector-valued operator algebras

Let $(X,d)$ be an infinite compact metric space, let $(B,parallel . parallel)$ be a unital Banach space, and take $alpha in (0,1).$ In this work, at first we define the big and little $alpha$-Lipschitz vector-valued (B-valued) operator algebras, and consider the little $alpha$-lipschitz $B$-valued operator algebra, $lip_{alpha}(X,B)$. Then we characterize its second dual space.

متن کامل

ar X iv : 0 90 4 . 31 78 v 1 [ m at h . FA ] 2 1 A pr 2 00 9 TREE METRICS AND THEIR LIPSCHITZ - FREE SPACES

We compute the Lipschitz-free spaces of subsets of the real line and characterize subsets of metric trees by the fact that their Lipschitz-free space is isometric to a subspace of L1.

متن کامل

Non-commutative Metrics on Matrix State Spaces

We use the theory of quantization to introduce non-commutative versions of metric on state space and Lipschitz seminorm. We show that a lower semicontinuous matrix Lipschitz seminorm is determined by their matrix metrics on the matrix state spaces. A matrix metric comes from a lower semicontinuous matrix Lip-norm if and only if it is convex, midpoint balanced, and midpoint concave. The operator...

متن کامل

On the character space of vector-valued Lipschitz algebras

We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...

متن کامل

POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS

The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let  be a non-emp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014